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Abstract 

Spatial modelling has its applications in many fields. In time series, there exists a 
class of models known as long memory models, where the autocorrelation function 
decays rather slowly. These types of time series data are modelled as fractionally 
integrated ARMA processes. Spatial data may also exhibit a long memory 
structure and in order to model such structure, a class of models called as the 
Fractionally Integrated Separable Spatial Autoregressive (FISSAR) Model has 
been introduced. The objectives of this research are to demonstrate on how to 
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simulate a FISSAR (1, 1) process, to examine the properties of the variance 
estimator and to illustrate the correlation properties. 

1. Introduction 

Spatial modelling has its applications in many fields like geology, 
geography, agriculture, meteorology, etc. Spatial data can be classified as 
geostatistical data, lattice data, or point patterns. These differences are 
due to whether the spatial data has been observed on a continuous 
domain or at discrete locations. In point pattern analysis, the domain is 
random and interest focusses on the location of events. 

In this paper, we concentrate on lattice data observed on a regular 
grid. Many models have been suggested in modelling spatial dependence 
like the Simultaneous Autoregression (SAR) (Whittle [16]), Conditional 
Autoregression (CAR) (Bartlett [1], and Besag [4]), Moving Average (MA) 
(Haining [9]), and Unilateral models (Basu and Reinsel [3]). 

There exists another class of models that are known as separable 
models, which has the property of a reflection symmetric correlation 
structure, ( )..,e.i ,,,, khkhkhkh −−−− ρ=ρ=ρ=ρ  This type of model is 

also known as linear by linear process (Martin [11]) and its correlation 
structure can be expressed as a product of correlations, ( =ρ khx ,,.,e.i  

).,, kzhy ρρ  Basawa et al. [2] have considered separable models on k-

dimensional lattice and have shown that the correlation structure is 
( ) ( ).ii hρ=ρ ∏h  

In area of time series, there exists a class of models known as long 
memory models, where the autocorrelation function decays rather slowly. 
These types of time series data are modelled as fractionally integrated 
ARMA processes (see Brockwell and Davis [6] & [7]). The usefulness of 
time series long memory models have been applied in various diverse 
fields (Hurst [10]), Granger [8], Shitan and Wee [12], Shitan et al. [13]). 

It is conceivable that in some cases spatial data may also exhibit a 
long memory structure. Boissy et al. [5] had extended the long memory 
concept from time series to the spatial context and introduced the 
fractional autoregressive model given as, 
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( ) ,,,, 21 stst
dXBB ε=∇βαφ  

where ( ) ( ) .11 21 21
ddd BB −−=∇  Independently, Shitan [14, 15] worked 

on a similar model and termed it the Fractionally Integrated Separable 
Spatial Autoregressive (FISSAR) model as it is possible to construct a 
non-separable counterpart. 

Hence, in this paper, we discuss on (i) how to simulate the FISSAR  
(1, 1) process, (ii) the variance estimator through a simulation study, and 
(iii) the decaying nature of the correlation function which is illustrated 
graphically. 

In Section 2 of this paper, the simulation of FISSAR (1, 1) process is 
discussed in detail, while in Section 3, we deal with the variance of the 
FISSAR (1, 1) process. In Section 4, we compute the correlation function 
and illustrate graphically its decaying nature. Finally, the conclusions 
are drawn in Section 5. 

2. Simulation of the FISSAR (1, 1) Process 

In this section, we provide and discuss two methods of simulating the 
FISSAR (1, 1) process. 

The FISSAR model is defined as follows (See Shitan [14]). Let { }ijY  

be a sequence of spatial observations on a two dimensional regular lattice 
that satisfies the following equation. 

( ) ( ) ( ) ,111 21 21210110201110 ijij
dd ZYBBBBBB =−−φφ+φ−φ−  (1) 

where 1B  is the usual backward shift operator acting in the th-i  

direction, 2B  is the backward shift operator acting in the th-j  direction, 
{ }jiZ ,  is a two dimensional white noise process with mean zero and 

variance 2σ  and .5.0,5.0 21 <<− dd  

Method 1 

In order to show how to simulate a FISSAR (1, 1) process, we begin 
with the defining equation of FISSAR (1, 1) model (Equation (1)). 
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Using binomial expansions, we can rewrite the Equation (1) as, 

( ) ,1 2
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Now, we can simulate a FISSAR (1, 1) process by first generating a 
sequence of { }ijZ  followed by { }ijY  according to Equation (2) by 

truncating at some point. The truncation points for the infinite sums 
used in this study is fifty (50). In order to reduce the effects of the initial 
value and border effects, we need to generate a sufficiently large data set 
and use only the interior values of the spatial grids. 

Method 2 

Equation (1) can equivalently be represented by the following two 
equations. 

( ) ,1 210110201110 ijij WYBBBB =φφ+φ−φ−  (3) 

and 

( ) ( ) .11 21 21 ijij
dd ZWBB =−−  (4) 
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We shall call the process { }ijW  as two dimensional fractionally integrated 

white noise. Notice that ( )2101102011101 BBBB φφ+φ−φ−  can be 

factored out as ( ) ( )201110 11 BB φ−φ−  and this is known as a separable 

process. 

Now, we can simulate a FISSAR (1, 1) process in two stages. Firstly, 
we generate a sequence of { },ijZ  and then by using Equation (4), we 

generate the sequence { }.ijW  Finally, using Equation (3), we obtain the 

sequence { }.ijY  Since, the expansions involve infinite sums a truncation 

at some point is required. The truncation points for the infinite sums 
used in this study are fifty (50). In this study for both simulation 
methods, we generated grid size ,5050 ×  but used only the interior 

values of grid size 3030 ×  (south east corner). 

A typical sample realisation of the FISSAR (1, 1) model with =φ10  

,1.0,1.0,1.0 101 ==φ d  and 1.02 =d  is shown in Figure 1. Further, 

examples of simulation with differing parameter values are discussed in 
the results section (Section 4). 

The two simulation methods are equivalent in the sense that they 
would produce exactly the same data values for a given set of parameter 
values. However, the second method of simulation would be 
computationally faster and hence the second method would be preferred. 
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Figure 1. FISSAR sample realisation: ,1.0,1.0,1.0 10110 ==φ=φ d  
and .1.02 =d  

3. Variance of the FISSAR (1, 1) Process 

In Subsection 3.1, the theoretical variance of the FISSAR (1, 1) 
process is discussed, and in Subsection 3.2, an estimator of the variance 
is provided. 

3.1. Theoretical variance 

The theoretical variance of the FISSAR (1, 1) process is given as, 

( ) ( ),,0,0 0110
0000

nlmkW
nlmk

nmlk
Y −−γφφ=γ ++

∞

=

∞

=

∞

=

∞

=
∑∑∑∑  (5) 

where ( )nlmkW −−γ ,  is given as, 
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 (see Shitan [14]). 
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Since, the theoretical variance involves computation of infinite sums, 
we have therefore, computed the approximate theoretical variance for 
some selected values of the parameters of the FISSAR (1, 1) model using 
Equation (5). The cut off points in the computation of Equation (5) is 100 
for each of the summations, while the selected parameter values are 

,0.1,1.0,1.0 2
0110 =σ=φ=φ  while 1d  and 2d  are allowed to vary from 

4.0−  to .4.0  These approximate theoretical variances are listed out in 
Table 1. 

Table 1. Theoretical variance for some selected values of the FISSAR 

(1, 1) model ( )0.1,1.0,1.0 2
0110 =σ=φ=φ  

21 : dd  4.0−  3.0−  2.0−  1.0−  0  1.0  2.0  3.0  4.0  

4.0−  1.2656 1.2005 1.1546 1.1309 1.1363 1.1858 1.3154 1.6349 2.6962 

3.0−  1.2005 1.1388 1.0952 1.0728 1.0779 1.1249 1.2478 1.5509 2.5577 

2.0−  1.1546 1.0952 1.0533 1.0317 1.0367 1.0818 1.2000 1.4915 2.4597 

1.0−  1.1309 1.0728 1.0317 1.0105 1.0154 1.0596 1.1754 1.4609 2.4092 

0  1.1363 1.0779 1.0367 1.0154 1.0203 1.0648 1.1811 1.4679 2.4209 

1.0  1.1858 1.1249 1.0181 1.0596 1.0648 1.1111 1.2326 1.5319 2.5264 

2.0  1.3154 1.2478 1.2000 1.1754 1.1811 1.2326 1.3672 1.6993 2.8024 

3.0  1.6349 1.5509 1.4915 1.4609 1.4679 1.5319 1.6993 2.1120 3.4830 

4.0  2.6962 2.5577 2.4597 2.4092 2.4209 2.5264 2.8024 3.4830 5.7441 

It can be seen that Table 1 is a symmetric matrix. Now for a fixed 
row, the values initially decrease as we proceed from left to right, attains 
a minimum, and then the values increase. In short, it has a quadratic 
shaped curve. Similarly, for a fixed column, as we proceed from top to 
bottom, we observe that the variance decreases, attains a minimum, and 
then increases again. Hence, along the column, the variance also has a 
quadratic shaped curve. 

Table 2 shows the theoretical variance for some selected values of the 
parameters of the FISSAR (1, 1) model computed by using Equation (5), 

where we have fixed ,3.0,3.0 0110 =φ=φ  and .0.12 =σ  The parameters 

1d  and 2d  are allowed to vary from 4.0−  to .4.0  
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Table 2. Theoretical variance for some selected values of the FISSAR 

(1, 1) model ( )0.1,3.0,3.0 2
0110 =σ=φ=φ  

21 : dd  4.0−  3.0−  2.0−  1.0−  0  1.0  2.0  3.0  4.0  

4.0−  1.1186 1.0914 1.0847 1.1045 1.1622 1.2815 1.5189 2.0453 3.7187 

3.0−  1.0914 1.0648 1.0583 1.0777 1.1339 1.2503 1.4819 1.9955 3.6282 

2.0−  1.0847 1.0583 1.0519 1.0711 1.1270 1.2427 1.4729 1.9834 3.6061 

1.0−  1.1045 1.0777 1.0711 1.0907 1.1476 1.2654 1.4998 2.0196 3.6720 

0  1.1622 1.1339 1.1270 1.1476 1.2076 1.3315 1.5782 2.1251 3.8638 

1.0  1.2815 1.2503 1.2427 1.2654 1.3315 1.4682 1.7402 2.3433 4.2604 

2.0  1.5189 1.4819 1.4729 1.4998 1.5782 1.7402 2.0625 2.7773 5.0496 

3.0  2.0453 1.9955 1.9834 2.0196 2.1251 2.3433 2.7773 3.7398 6.7996 

4.0  3.7187 3.6282 3.6061 3.6720 3.8638 4.2604 5.0496 6.7996 12.3628 

Again, we notice that Table 2 is a symmetric matrix and for a fixed 
row, the variance initially decreases as we proceed from left to right. It 
attains a minimum, and then the values increases. For a fixed column, as 
we proceed from top to bottom, we observe a similar pattern, where the 
variance decreases attaining a minimum, and then increases again. 

3.2. Estimation of the variance 

Given a spatial data set { }ijy  on an m by n regular grid, an estimate 

of ( )0,0Yγ  is given as, 

( ) ( ) ,..10,0ˆ 2

11
yymn ij

n

j

m

i
Y −=γ ∑∑

==

 (6) 

where .1.. 11 ij
n
j

m
i ymny ∑∑ ===  In Subsection 3.3, we discuss the 

simulation results of the estimator provided by Equation (6). 

3.3. Simulation results for the variance estimator 

We simulated several sets of 5050 ×  spatial grid of the FISSAR (1, 1) 
model with the following parameter values. 

 (i)  ,0.1,4.0,4.0,1.0,1.0 2
210110 =σ−=−==φ=φ dd  
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(ii)  ,0.1,3.0,4.0,1.0,1.0 2
210110 =σ−=−==φ=φ dd  

(iii) ,0.1,4.0,4.0,1.0,1.0 2
210110 =σ=−==φ=φ dd  

(iv) ,0.1,1.0,1.0,1.0,1.0 2
210110 =σ===φ=φ dd  

(v)  ,0.1,4.0,3.0,1.0,1.0 2
210110 =σ===φ=φ dd  

(vi) .0.1,4.0,4.0,1.0,1.0 2
210110 =σ===φ=φ dd  

We then took the 3030 ×  interior values (south east corner) of the 
spatial grid for studying the properties of the FISSAR (1, 1) model. We 
computed the sample variance using Equation (6) and carried out the 
following computations in our simulation study, where we let s be the 
number of simulations. 

(i) Mean, ( ) ( ),0,0ˆ10,0ˆ ,1 iY
s
iY s γ=γ ∑ =  

(ii) Estimated Bias ( ) ( ),0,00,0ˆ YY γ−γ=  

(iii) Estimated Standard Errors ( ( ) ( )) ,0,0ˆ0,0ˆ
1

1 2
,1 YiY

s
is γ−γ

−
= ∑ =

 

(iv) Estimated Root Mean Square Errors (RMSE)  

( ( ) ( )) .0,00,0ˆ1 2
,1 YiY

s
is γ−γ= ∑ =  

In this study, s was fixed at 100 and the results of the above 
computations are contained in Table 3. 

The smallest absolute estimated bias occurred at ,4.01 −=d  and 
.3.02 −=d  For other values of 1d  and ,2d  the bias was negative. We 

observed that the absolute estimated bias appears to be smaller for 
negative values of 1d  and 2d  than for the corresponding positive values 
of 1d  and .2d  For instance, the absolute estimated bias is 0.0051 for 

,4.01 −=d  and ,4.02 −=d  but the absolute estimated bias is 2.9488 for 
,4.01 =d  and .4.02 =d  
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The smallest estimated standard error was observed for ,1.01 =d  and 

.1.02 =d  The smallest RMSE value also occurred for ,1.01 =d  and 

.1.02 =d  Once again, the estimated RMSE values appears to be larger 

for positive values of 1d  and 2d  compared with the corresponding 

negative values of 1d  and .2d  

We also simulated several sets of 5050 ×  spatial grid of the FISSAR 
(1, 1) model with the following parameter values. 

Table 3. Simulation results for ( )0,0ˆYγ  

( )0.1,1.0,1.0 2
0110 =σ=φ=φ  

 
4.01 −=d  

4.02 −=d  

4.01 −=d  

3.02 −=d  

4.01 −=d  

4.02 =d  

1.01 =d  

1.02 =d  

3.01 =d  

4.02 =d  

4.01 =d  

4.02 =d  

Theoretical 
Variance ( )0,0Yγ  1.2656 1.2005 2.6962 1.1111 3.4830 5.7441 

Mean ( )0,0ˆYγ  1.2605 1.2023 1.9891 1.0968 2.2556 2.7953 

Estimated Bias 0051.0−  0.0018 0.7071−  0.0143−  1.2274−  2.9488−  

Absolute 
Estimated Bias 0.0051 0.0018 0.7071 0.0143 1.2274 2.9488 

Estimated 
Standard Errors 0.0745 0.1112 0.2101 0.0602 0.2581 0.3774 

Estimated RMSE 0.0743 0.1107 0.7374 0.0616 1.2540 2.9726 

  (i) ,0.1,4.0,4.0,3.0,3.0 2
210110 =σ−=−==φ=φ dd  

  (ii) ,0.1,3.0,4.0,3.0,3.0 2
210110 =σ−=−==φ=φ dd  

(iii) ,0.1,4.0,4.0,3.0,3.0 2
210110 =σ=−==φ=φ dd  

(iv) ,0.1,1.0,1.0,3.0,3.0 2
210110 =σ===φ=φ dd  

  (v) ,0.1,4.0,3.0,3.0,3.0 2
210110 =σ===φ=φ dd  

(vi) .0.1,4.0,4.0,3.0,3.0 2
210110 =σ===φ=φ dd  
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Similar computations using (i) to (iv) were carried out and the results 
are presented in Table 4. 

From Table 4, we observed that the smallest absolute estimated bias 
occurred at ,4.01 −=d  and .4.02 −=d  However, for the estimated 
standard error, the smallest value occurred at ,4.01 −=d  and .3.02 −=d  
The estimated RMSE was smallest for ,4.01 −=d  and .3.02 −=d  

Table 4. Simulation results for ( )0,0ˆYγ  

( )0.1,3.0,3.0 2
0110 =σ=φ=φ  

 
4.01 −=d  

4.02 −=d  

4.01 −=d  

3.02 −=d  

4.01 −=d  

4.02 =d  

1.01 =d  

1.02 =d  

3.01 =d  

4.02 =d  

4.01 =d  

4.02 =d  

Theoretical Variance 
( )0,0Yγ  1.1186 1.0914 3.7187 1.4682 6.7996 12.3628 

Mean ( )0,0ˆYγ  1.1118 1.0841 2.5909 1.4404 3.9924 5.2266 

Estimated Bias 0068.0−  0073.0−  1278.1−  0278.0−  8072.2−  1362.7−  

Absolute Estimated 
Bias 

0.0068 0.0073 1.1278 0.0278 2.8072 7.1362 

Estimated Standard 
Errors 

0.0618 0.0607 0.4045 0.0968 0.6103 0.9211 

Estimated RMSE 0.0618 0.0608 1.1975 0.1002 2.8721 7.1948 

4. The Correlation Function of the FISSAR (1, 1) Process 

The autocovariance of the process FISSAR (1, 1) process ( )21, hhYγ  
is given by (see Shitan [14]), 

( ) ( ),,, 210110
0000

21 nlhmkhhh W
nlmk

nmlk
Y −+−+γφφ=γ ++

∞

=

∞

=

∞

=

∞

=
∑∑∑∑  

where ( )⋅⋅γ ,W  is given as, 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) .1111

21211,
22221111

212
21

21

dhdhdhdh
ddhh

hh
W −−Γ+−Γ−−Γ+−Γ

−Γ−Γ−
σ=γ

+
 

The correlation function is given by, 
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( ) ( )
( ) .0,0

,, 21
21

Y
Y hhhh
γ

γ
=ρ  (7) 

In Figure 2, the correlation plot for the FISSAR (1, 1) process is shown. 

When ,01 =d  and ,02 =d  the FISSAR (1, 1) model reduces to the 
Standard Separable Autoregressive (SSAR) model, whose correlation 
function is given as 21

0110
hh φφ  (see Shitan [14]). In Figure 3, the correlation 

plot for the SSAR (1, 1) model is shown. 

 

Figure 2. The correlation plot for the FISSAR (1, 1) process. 

 

Figure 3. The correlation plot for the SSAR (1, 1) model. 
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Now, we wish to illustrate graphically that the FISSAR (1, 1) process 
has a slower decaying correlation structure when compared with SSAR 
(1, 1) process. One way to do this is to combine the plot of the correlation 
functions of FISSAR (1, 1) and SSAR (1, 1) into a single graph as shown 
in Figure 4. 

 

Figure 4. The combined plot of the correlation functions of FISSAR 
(1, 1) and SSAR (1, 1) process. 

However, when these plots are combined into a single graph, it is 
difficult to distinguish the decaying structure of the two different 
processes. Hence, in order to clearly see the decaying pattern of the plots, 
we plotted the correlation functions against ,2h  while 1h  was kept fixed 
at 0, 4, 8, 12, 16, and 20. These plots are shown in Figures 5 to 8. The 
continuous line refers to the correlation plot of the FISSAR model, while 
the broken line is the correlation plot of the SSAR process. From these 
figures, we can clearly see that the FISSAR (1, 1) has a slower decaying 
property when compared with SSAR (1, 1), thus illustrating its long 
memory property. 
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Figure 5. Plot of the correlation functions against ,2h  while 1h  was kept 

fixed at lags 0, 4, 8, 12, 16, and 20 (read across), ,1.0,1.0 21 == dd  

,8.0,8.0 0110 =φ=φ  (FISSAR plot-continuous line, SSAR plot-broken 
line). 
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Figure 6. Plot of the correlation functions against ,2h  while 1h  was kept 

fixed at lags 0, 4, 8, 12, 16, and 20 (read across), ,1.0,1.0 21 == dd  

,8.0,8.0 0110 −=φ−=φ  (FISSAR plot-continuous line, SSAR plot-broken 
line). 
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Figure 7. Plot of the correlation functions against ,2h  while 1h  was kept 

fixed at lags 0, 4, 8, 12, 16, and 20 (read across), ,3.0,3.0 21 == dd  

,8.0,8.0 0110 =φ=φ  (FISSAR plot-continuous line, SSAR plot-broken 
line). 
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Figure 8. Plot of the correlation functions against ,2h  while 1h  was kept 

fixed at lags 0, 4, 8, 12, 16, and 20 (read across), ,1.0,1.0 21 == dd  

,8.0,8.0 0110 −=φ−=φ  (FISSAR plot-continuous line, SSAR plot-broken 
line). 

5. Conclusion 

The objective of this research was (i) to demonstrate on how to 
simulate a FISSAR (1, 1) process, (ii) to examine the variance estimator 
through a simulation study, and (iii) to illustrate graphically the decaying 
nature of the correlation functions. 
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Clearly, the sample realisations of FISSAR (1, 1) process can take 
many different forms and a typical realisation is shown in Figure 1. The 
ability of the FISSAR process to take on many different forms is useful 
because it can then be used to model many real life phenomena. 

Based on our simulation results, it is found that the numerically 
computed bias, standard error, and RMSE of the variance estimator 
provided in Equation (6) were quite small. Hence, this would suggest that 
this estimator might be a reasonable one. 

We have also illustrated graphically that the correlation of the 
FISSAR process decays at a slower rate than the SSAR process for a 
given set of parameters. This implies that the FISSAR model would be 
suitable to model data which have long memory. 
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